Loading [MathJax]/extensions/Safe.js

20 Random Stocks Investment Strategy

Abstract

When we passively long-term invest, we prefer using well-established ETFs. However there might be circumstances when one might want to avoid using ETFs for some reason, however, still can purchase individual stocks.

Here I want to show that we do not have reproduce index of the world market to emulate its growth. It is actually enough to pick 20 random companies and invest the same amount of money into each of them, so that the risk of underperforming is less than 4% over a 8-year period. By underperforming we mean underperforming the inflation.

Plan

  • Get data
    • Get the last report about current companies traded at Nasdaq and their capitalizations
    • Get the historical data about stock prices for the given companies
  • Filter companies
    • Accept only the last 20 years, 2002-2022
    • Accept only companies with IPO year < 2000
  • Build Nasdaq index
    • Given the current market caps and the change of prices, compute the market share by the time of investment
  • Analyze the data
    • Take three investment periods: 0.5, 3, 8 years
    • Take four strategies
      • Nasdaq Index - amount of shares proportionate to market cap for all companies
      • Uniform distribution - the same amount of money into each available company
      • Uniform partial distribution 20 - the same amount of money itno each of 20 random companies
      • Uniform partial distribution 5 - the same amount of money into each of 5 random companies
    • Move this window over the last 20 years
    • For each window's position and for each strategy
      • "Invest" $ 1000 into stocks in the beginning of this window
      • Fix the profits by the end, measure how much it increased
      • The result is a number ∈ [0; +inf) which is the increase of the value of our portfolio over the selected period of time
    • Pool all these numbers so that we have 12 sets: a set of numbers for each period for each strategy
      • To compute the annual growth we
        • Exclude 1/3 of outliers
        • Compute the geometric mean of these numbers
      • To compute the underperformance risk we
        • Assume inflation = 1.03
        • Compute the share of annual increases which are lower than the inflation. This share is that risk

Results

Strategy Rel. 1/2 year Rel. 3 years Rel. 8 years Growth
Nq 400 .668 .789 .958 .10-.13
U 400 .692 .837 1.0 .10-.14
UP 20 .679 .799 .965 .10-.13
UP 5 .617 .716 .826 .09-.13
  • Reliability (rel.) - the probability that the given strategy will result in portfolio worth less in given number of years than it was with the inflation adjusted.
  • Nq 400 - the Nasdaq index over 400 shares
  • U 400 - uniform investing into 400 shares
  • U 20 - uniform investing into 20 shares
  • U 5 - uniform investing into 5 shares

Problems

  1. We did not take into account companies which went bankrupt. For both index and uniform investing.
  2. There is no balancing in the index, and new IPO companies are not taken into the account
  3. Only the last 20 years are analyzed

Conclusion

It seems like 20 random stocks strategy may work in real world, and its risks are comparable to the risks of index ETFs. However, I cannot conclude this confidently given all the problems with the research.

In [4]:
import pandas as pd
import yfinance as yf

Install yfinance

In [ ]:
# !pip install yfinance --upgrade
In [5]:
ticker_info = pd.read_csv("../nasdaq_screener_1652817332355.csv", sep=",")
ticker_info
Out[5]:
Symbol Name Last Sale Net Change % Change Market Cap Country IPO Year Volume Sector Industry
0 A Agilent Technologies Inc. Common Stock $123.045 2.7450 2.282% 3.692745e+10 United States 1999.0 1475402 Capital Goods Electrical Products
1 AA Alcoa Corporation Common Stock $63.68 3.4000 5.64% 1.174569e+10 NaN 2016.0 4906918 Basic Industries Metal Fabrications
2 AAC Ares Acquisition Corporation Class A Ordinary ... $9.80 0.0100 0.102% 1.225000e+09 NaN 2021.0 123113 Finance Business Services
3 AACG ATA Creativity Global American Depositary Shares $1.09 0.0800 7.921% 3.444246e+07 China NaN 9454 Miscellaneous Service to the Health Industry
4 AACI Armada Acquisition Corp. I Common Stock $9.84 0.0000 0.00% 2.037815e+08 United States 2021.0 758 Finance Diversified Financial Service
... ... ... ... ... ... ... ... ... ... ... ...
8380 ZWS Zurn Water Solutions Corporation Common Stock $28.065 0.5050 1.832% 3.535279e+09 United States 2012.0 584857 Public Utilities Environmental Services
8381 ZY Zymergen Inc. Common Stock $1.42 -0.0800 -5.333% 1.464351e+08 United States 2021.0 1346483 Basic Industries Industrial Specialties
8382 ZYME Zymeworks Inc. Common Shares $5.915 0.5750 10.768% 3.417167e+08 Canada 2017.0 1785364 NaN NaN
8383 ZYNE Zynerba Pharmaceuticals Inc. Common Stock $1.0209 0.0909 9.774% 4.453314e+07 United States 2015.0 341906 Health Care Biotechnology: Pharmaceutical Preparations
8384 ZYXI Zynex Inc. Common Stock $7.375 0.4650 6.729% 2.879650e+08 United States NaN 254997 Health Care Other Pharmaceuticals

8385 rows × 11 columns

In [413]:
old_companies = ticker_info[ticker_info["IPO Year"] < 2000]
old_companies
Out[413]:
Symbol Name Last Sale Net Change % Change Market Cap Country IPO Year Volume Sector Industry
0 A Agilent Technologies Inc. Common Stock $123.045 2.7450 2.282% 3.692745e+10 United States 1999.0 1475402 Capital Goods Electrical Products
20 AAPL Apple Inc. Common Stock $149.3408 3.8008 2.612% 2.589172e+12 United States 1980.0 61494093 Technology Computer Manufacturing
30 ABCB Ameris Bancorp Common Stock $44.33 1.8800 4.429% 3.078088e+09 United States 1994.0 157730 Finance Major Banks
117 ACU Acme United Corporation. Common Stock $33.21 0.7100 2.185% 1.169207e+08 United States 1988.0 4082 Consumer Durables Home Furnishings
126 ADBE Adobe Inc. Common Stock $410.54 7.6800 1.906% 1.939802e+11 United States 1986.0 1854033 Technology Computer Software: Prepackaged Software
... ... ... ... ... ... ... ... ... ... ... ...
8315 YPF YPF Sociedad Anonima Common Stock $4.475 0.0550 1.244% 1.760075e+09 Argentina 1993.0 1191749 Energy Integrated oil Companies
8328 ZBRA Zebra Technologies Corporation Class A Common ... $346.62 17.2900 5.25% 1.820234e+10 United States 1991.0 284197 Technology Computer peripheral equipment
8338 ZEUS Olympic Steel Inc. Common Stock $33.485 1.6150 5.067% 3.726101e+08 United States 1994.0 47725 Basic Industries Steel/Iron Ore
8361 ZNH China Southern Airlines Company Limited Common... $25.50 0.5000 2.00% 8.643708e+09 China 1997.0 23008 Transportation Air Freight/Delivery Services
8371 ZTR Virtus Total Return Fund Inc. $8.84 0.1500 1.726% 2.180176e+08 United States 1988.0 41697 Finance Investment Managers

480 rows × 11 columns

In [414]:
tickers_as_one = " ".join(filter(lambda x: "^" not in x, old_companies["Symbol"]))
In [415]:
tickers_as_one[:100]
Out[415]:
'A AAPL ABCB ACU ADBE ADTN AEHR AEIS AHPI AIV AKAM ALKS ALOT AMAT AMGN AMKR AMSC AMWD AMZN ANSS ARLP '
In [416]:
all_nasdaq_2000 = yf.download(tickers_as_one, period="max")
# all_nasdaq = pd.read_csv("../all_history_all_nasdaq.csv", )
[*********************100%***********************]  480 of 480 completed
In [418]:
all_nasdaq_2000.to_csv("../all_history_2000IPO_caps_nasdaq.csv")
all_nasdaq_2000
Out[418]:
Adj Close ... Volume
A AAPL ABCB ACU ADBE ADTN AEHR AEIS AHPI AIV ... WNC WRLD WTS XOMA XRAY YPF ZBRA ZEUS ZNH ZTR
Date
1973-02-21 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1973-02-22 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1973-02-23 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1973-02-26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1973-02-27 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2022-05-12 116.129997 142.559998 42.500000 31.799999 388.489990 17.250000 7.42 75.910004 1.89 5.61 ... 311000.0 44300.0 162800.0 36300.0 4186200.0 2035400.0 1076600.0 82200.0 30500.0 67700.0
2022-05-13 119.379997 147.110001 42.779999 32.410000 405.450012 17.580000 8.03 79.519997 1.91 5.82 ... 392500.0 34400.0 129700.0 61000.0 2041500.0 1491100.0 627700.0 66300.0 22600.0 60400.0
2022-05-16 120.300003 145.539993 42.450001 32.500000 402.859985 17.270000 7.78 77.379997 1.73 5.83 ... 193000.0 46200.0 103900.0 43700.0 1826700.0 2631700.0 394900.0 70500.0 18400.0 72400.0
2022-05-17 123.080002 149.240005 44.330002 32.509998 409.649994 18.480000 8.40 80.879997 1.86 6.13 ... 412700.0 37200.0 123700.0 39800.0 1592800.0 1405100.0 456500.0 74600.0 26900.0 43700.0
2022-05-18 121.010002 141.559998 42.650002 32.779999 398.260010 17.790001 8.03 77.980003 1.87 6.03 ... 222443.0 24010.0 65184.0 32318.0 760620.0 860619.0 274698.0 133969.0 5808.0 49206.0

12427 rows × 2880 columns

In [37]:
# all_nasdaq.to_csv("../all_history_all_nasdaq.csv")
In [39]:
ticker_info[0:5]
Out[39]:
Symbol Name Last Sale Net Change % Change Market Cap Country IPO Year Volume Sector Industry
0 A Agilent Technologies Inc. Common Stock $123.045 2.745 2.282% 3.692745e+10 United States 1999.0 1475402 Capital Goods Electrical Products
1 AA Alcoa Corporation Common Stock $63.68 3.400 5.64% 1.174569e+10 NaN 2016.0 4906918 Basic Industries Metal Fabrications
2 AAC Ares Acquisition Corporation Class A Ordinary ... $9.80 0.010 0.102% 1.225000e+09 NaN 2021.0 123113 Finance Business Services
3 AACG ATA Creativity Global American Depositary Shares $1.09 0.080 7.921% 3.444246e+07 China NaN 9454 Miscellaneous Service to the Health Industry
4 AACI Armada Acquisition Corp. I Common Stock $9.84 0.000 0.00% 2.037815e+08 United States 2021.0 758 Finance Diversified Financial Service
In [461]:
companies_to_drop_2010 = [ "CVT", "LAND", "ATAI", "MDH", "THRX", "LJPC" ]
companies_to_drop_2000 = companies_to_drop_2010 + ["CLM", "CSII", "CTIB", "CTIC"]
In [462]:
COUNT = 1000
tickers_largest_caps = old_companies.sort_values("Market Cap", ascending=False)[:COUNT]
index_large = tickers_largest_caps[:COUNT]
index_large = index_large.loc[index_large["Symbol"].map(lambda x: x not in companies_to_drop_2000)]
index_large
Out[462]:
Symbol Name Last Sale Net Change % Change Market Cap Country IPO Year Volume Sector Industry
20 AAPL Apple Inc. Common Stock $149.3408 3.8008 2.612% 2.589172e+12 United States 1980.0 61494093 Technology Computer Manufacturing
5070 MSFT Microsoft Corporation Common Stock $266.37 4.8700 1.862% 1.992190e+12 United States 1986.0 21699478 Technology Computer Software: Prepackaged Software
469 AMZN Amazon.com Inc. Common Stock $2301.35 85.1400 3.842% 1.170744e+12 United States 1997.0 3180182 Consumer Services Catalog/Specialty Distribution
7622 TSM Taiwan Semiconductor Manufacturing Company Ltd. $93.3825 2.9725 3.288% 4.842628e+11 Taiwan 1997.0 5526460 Technology Semiconductors
5480 NVDA NVIDIA Corporation Common Stock $181.84 9.2000 5.329% 4.553300e+11 United States 1999.0 51524176 Technology Semiconductors
... ... ... ... ... ... ... ... ... ... ... ...
3951 IMH Impac Mortgage Holdings Inc. Common Stock $0.70 0.0000 0.00% 1.501862e+07 United States 1997.0 19760 Finance Finance: Consumer Services
4092 ISIG Insignia Systems Inc. Common Stock $7.3567 0.1167 1.612% 1.314124e+07 United States 1991.0 9672 Technology Advertising
4909 MIND MIND Technology Inc. Common Stock (DE) $0.9402 0.0171 1.852% 1.295041e+07 United States 1994.0 17151 Capital Goods Industrial Machinery/Components
1717 CLWT Euro Tech Holdings Company Limited Common Stock $1.5301 0.0101 0.664% 1.183094e+07 Hong Kong 1997.0 2687 Consumer Durables Diversified Electronic Products
278 AHPI Allied Healthcare Products Inc. Common Stock $1.8801 0.1501 8.676% 7.545851e+06 United States 1992.0 119119 Health Care Industrial Specialties

473 rows × 11 columns

In [463]:
sum_cap = sum(index_large["Market Cap"])
sum_cap
Out[463]:
11220327059039.0
In [464]:
props = pd.concat([index_large["Symbol"], index_large["Market Cap"].apply(lambda x: x / sum_cap)], axis=1, keys=["Symbol", "Share"])
props
Out[464]:
Symbol Share
20 AAPL 2.307573e-01
5070 MSFT 1.775519e-01
469 AMZN 1.043413e-01
7622 TSM 4.315942e-02
5480 NVDA 4.058081e-02
... ... ...
3951 IMH 1.338519e-06
4092 ISIG 1.171200e-06
4909 MIND 1.154192e-06
1717 CLWT 1.054421e-06
278 AHPI 6.725161e-07

473 rows × 2 columns

Get the stock value history of the big companies for the last 20 years

In [465]:
last_20_years = all_nasdaq_2000[-20 * 365 * 5 // 7:]
avg_price = (last_20_years["Close"] + last_20_years["Open"]) / 2
stock_history_big_index = avg_price.filter(index_large["Symbol"])
stock_history_big_index
Out[465]:
AAPL MSFT AMZN TSM NVDA ASML CSCO ADBE ORCL UPS ... DAIO TRIB TAIT RMTI ELTK IMH ISIG MIND CLWT AHPI
Date
2001-09-05 0.328482 28.480000 8.155000 8.654770 3.317708 18.613125 15.310000 16.097500 12.160000 55.309999 ... 2.25000 5.8600 1.75000 12.705 13.650 69.500000 50.29500 4.540 5.046704 6.700
2001-09-06 0.322500 28.145000 7.995000 8.474746 3.252500 17.167500 14.470000 15.682500 11.370000 54.849998 ... 2.25000 5.9400 1.67500 13.365 13.100 68.750000 51.20500 4.420 4.029304 6.650
2001-09-07 0.310536 27.877501 8.235000 8.678547 3.208750 16.903125 14.305000 15.475000 10.965000 54.185001 ... 2.22000 5.9800 1.66500 11.880 10.800 65.750000 49.87500 4.400 4.029304 7.000
2001-09-10 0.306875 28.125000 8.515000 8.698927 3.190000 16.723125 14.260000 16.185000 11.175000 53.349998 ... 2.18000 5.8200 1.73000 10.780 11.075 62.549999 49.45500 4.405 4.281136 6.600
2001-09-11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2022-05-12 142.665001 256.520004 2096.805054 86.955002 161.970001 518.529999 48.460001 380.944992 70.805000 177.394997 ... 3.06000 1.1650 4.11000 2.970 3.695 0.690000 7.34500 0.935 1.305000 1.880
2022-05-13 145.849998 259.235001 2221.239990 89.915001 172.470001 544.440002 49.135000 400.960007 71.064999 177.449997 ... 3.10500 1.1600 3.85000 1.970 3.855 0.695000 7.28500 0.925 1.355000 1.890
2022-05-16 145.544998 260.729996 2239.104980 90.140003 173.864998 534.100006 49.330000 401.299988 70.200001 178.795006 ... 3.03500 1.1750 3.70000 2.060 3.795 0.690000 7.17500 0.935 1.465000 1.830
2022-05-17 149.050003 266.464996 2286.435059 93.310001 181.255005 559.290009 50.139999 411.364990 71.465000 183.070000 ... 3.03500 1.2150 3.60500 2.030 3.815 0.675000 7.50000 0.955 1.500000 1.835
2022-05-18 144.205002 259.107498 2190.395020 91.674999 173.337502 539.424988 49.422501 401.320007 69.545002 178.150002 ... 3.03735 1.2209 3.63505 1.990 4.200 0.695000 7.29665 0.950 1.518650 1.910

5215 rows × 473 columns

What are the prices by the start date?

In [467]:
date_from = "2002-01-22"
date_to = "2022-05-17"

price_from = stock_history_big_index.loc[date_from]
price_to = stock_history_big_index.loc[date_to]
In [468]:
price_from
Out[468]:
AAPL     0.393661
MSFT    32.767500
AMZN    12.670000
TSM     12.119396
NVDA     5.275000
          ...    
IMH     82.200001
ISIG    58.975000
MIND     4.580000
CLWT     4.373810
AHPI     7.200000
Name: 2002-01-22 00:00:00, Length: 473, dtype: float64
In [469]:
price_to
Out[469]:
AAPL     149.050003
MSFT     266.464996
AMZN    2286.435059
TSM       93.310001
NVDA     181.255005
           ...     
IMH        0.675000
ISIG       7.500000
MIND       0.955000
CLWT       1.500000
AHPI       1.835000
Name: 2022-05-17 00:00:00, Length: 473, dtype: float64
In [470]:
market_cap_li_indexed = pd.concat([index_large["Market Cap"]], axis=1).set_index(index_large["Symbol"])["Market Cap"]
market_cap_li_indexed
Out[470]:
Symbol
AAPL    2.589172e+12
MSFT    1.992190e+12
AMZN    1.170744e+12
TSM     4.842628e+11
NVDA    4.553300e+11
            ...     
IMH     1.501862e+07
ISIG    1.314124e+07
MIND    1.295041e+07
CLWT    1.183094e+07
AHPI    7.545851e+06
Name: Market Cap, Length: 473, dtype: float64
In [471]:
market_cap_from = price_from / price_to * market_cap_li_indexed
market_cap_from
Out[471]:
AAPL    6.838350e+09
MSFT    2.449818e+11
AMZN    6.487534e+09
TSM     6.289758e+10
NVDA    1.325131e+10
            ...     
IMH     1.828934e+09
ISIG    1.033340e+08
MIND    6.210774e+07
CLWT    3.449753e+07
AHPI    2.960770e+07
Length: 473, dtype: float64
In [472]:
index_large["Symbol"]
Out[472]:
20      AAPL
5070    MSFT
469     AMZN
7622     TSM
5480    NVDA
        ... 
3951     IMH
4092    ISIG
4909    MIND
1717    CLWT
278     AHPI
Name: Symbol, Length: 473, dtype: object
In [473]:
market_cap_from[market_cap_from.isna()]
Out[473]:
Series([], dtype: float64)

Given the budget, compute the amount of money needed for each company

In [474]:
market_cap_from.map(lambda x: x / market_sum * budget)
Out[474]:
AAPL     24.392421
MSFT    873.851154
AMZN     23.141057
TSM     224.355891
NVDA     47.267457
           ...    
IMH       6.523815
ISIG      0.368593
MIND      0.221539
CLWT      0.123053
AHPI      0.105611
Length: 473, dtype: float64
In [477]:
market_cap_from
Out[477]:
AAPL    6.838350e+09
MSFT    2.449818e+11
AMZN    6.487534e+09
TSM     6.289758e+10
NVDA    1.325131e+10
            ...     
IMH     1.828934e+09
ISIG    1.033340e+08
MIND    6.210774e+07
CLWT    3.449753e+07
AHPI    2.960770e+07
Length: 473, dtype: float64
In [476]:
budget = 1000.0
market_sum = market_cap_from.sum()
print("Total market cap", market_sum)
money_to_be_spent_on_company = market_cap_from.map(lambda x: x / market_sum * budget)
money_to_be_spent_on_company
Total market cap 1688016531965.493
Out[476]:
AAPL      4.051116
MSFT    145.130006
AMZN      3.843288
TSM      37.261233
NVDA      7.850223
           ...    
IMH       1.083481
ISIG      0.061216
MIND      0.036793
CLWT      0.020437
AHPI      0.017540
Length: 473, dtype: float64

How many stocks of each company we need?

In [478]:
number_of_stocks = pd.concat([index_large["Symbol"], index_large["Symbol"].map(lambda ticker: money_to_be_spent_on_company[ticker] / price_from[ticker])], axis=1, keys=["Symbol", "Stock count"])
number_of_stocks
Out[478]:
Symbol Stock count
20 AAPL 10.290874
5070 MSFT 4.429084
469 AMZN 0.303338
7622 TSM 3.074512
5480 NVDA 1.488194
... ... ...
3951 IMH 0.013181
4092 ISIG 0.001038
4909 MIND 0.008033
1717 CLWT 0.004673
278 AHPI 0.002436

473 rows × 2 columns

In [479]:
number_of_stocks
Out[479]:
Symbol Stock count
20 AAPL 10.290874
5070 MSFT 4.429084
469 AMZN 0.303338
7622 TSM 3.074512
5480 NVDA 1.488194
... ... ...
3951 IMH 0.013181
4092 ISIG 0.001038
4909 MIND 0.008033
1717 CLWT 0.004673
278 AHPI 0.002436

473 rows × 2 columns

In [646]:
plt.pie(number_of_stocks["Stock count"]);

What's the initial value of our portfolio and the final one?

In [481]:
def compute_portfolio_for_date(date, portfolio):
    prices = avg_price.loc[date]
    return portfolio.apply(lambda x: prices[x["Symbol"]] * x["Stock count"], axis=1).sum()
In [483]:
date_from, date_to
Out[483]:
('2002-01-22', '2022-05-17')
In [482]:
compute_portfolio_for_date(date_from, number_of_stocks), compute_portfolio_for_date(date_to, number_of_stocks)
Out[482]:
(1000.0000000000001, 6647.048086652489)

Visualize the growth

In [484]:
dates = stock_history_big_index.index[::30]
portfolio_value = dates.map(lambda x: compute_portfolio_for_date(x, number_of_stocks))
In [485]:
import matplotlib.pyplot as plt
In [486]:
plt.plot(dates, portfolio_value)
Out[486]:
[<matplotlib.lines.Line2D at 0x193af255880>]
In [487]:
nasdaq_index_costs = pd.concat([money_to_be_spent_on_company], axis=1, keys=["Cost"]).reset_index().rename(columns={"index": "Symbol"})
In [488]:
dates = all_nasdaq.index
dates
Out[488]:
DatetimeIndex(['1973-02-21', '1973-02-22', '1973-02-23', '1973-02-26',
               '1973-02-27', '1973-02-28', '1973-03-01', '1973-03-02',
               '1973-03-05', '1973-03-06',
               ...
               '2022-05-04', '2022-05-05', '2022-05-06', '2022-05-09',
               '2022-05-10', '2022-05-11', '2022-05-12', '2022-05-13',
               '2022-05-16', '2022-05-17'],
              dtype='datetime64[ns]', name='Date', length=12432, freq=None)
In [489]:
def build_graph_given_distribution(distribution, how_long_ago, dates_selector):
    date_from = all_nasdaq_2000.index[-how_long_ago]
    # print("Date from", date_from)
    price_from = avg_price.loc[date_from]
    portfolio = pd.concat([distribution["Symbol"], distribution.apply(lambda s: s["Cost"] / price_from[s["Symbol"]], axis=1)], axis=1, keys=["Symbol", "Stock count"])
    selected_dates = dates_selector(dates[-how_long_ago:])
    portfolio_values = pd.Series(selected_dates.map(lambda x: compute_portfolio_for_date(x, portfolio)))
    return selected_dates, portfolio_values
In [499]:
dates_ndq_index, values_ndq_index = build_graph_given_distribution(nasdaq_index_costs, 20 * 365 * 5 // 7, lambda x: x[::30])
plt.plot(dates_ndq_index, values_ndq_index)
Out[499]:
[<matplotlib.lines.Line2D at 0x193aaf52cd0>]
In [491]:
uniform_distr = pd.concat([old_companies["Symbol"], old_companies["Symbol"].map(lambda _: budget / old_companies.shape[0])], keys=["Symbol", "Cost"], axis=1)
uniform_distr
Out[491]:
Symbol Cost
0 A 2.083333
20 AAPL 2.083333
30 ABCB 2.083333
117 ACU 2.083333
126 ADBE 2.083333
... ... ...
8315 YPF 2.083333
8328 ZBRA 2.083333
8338 ZEUS 2.083333
8361 ZNH 2.083333
8371 ZTR 2.083333

480 rows × 2 columns

In [498]:
dates_uni_distr, values_uni_distr = build_graph_given_distribution(uniform_distr, 20 * 365 * 5 // 7, lambda x: x[::30])
plt.plot(dates_uni_distr, values_uni_distr)
Out[498]:
[<matplotlib.lines.Line2D at 0x193ab054c10>]

Growth of portfolio with proportional shares

In [502]:
total_growth = values_ndq_index[len(values_ndq_index) - 1] / values_ndq_index[0]
print("Total growth:", round(total_growth, 3))
annual_growth = total_growth ** (1 / 10)
print("Annual growth:", round(annual_growth, 3))
Total growth: 9.372
Annual growth: 1.251

Growth of portfolio with uniform shares

In [503]:
total_growth = values_uni_distr[len(values_uni_distr) - 1] / values_uni_distr[0]
print("Total growth:", round(total_growth, 3))
annual_growth = total_growth ** (1 / 10)
print("Annual growth:", round(annual_growth, 3))
Total growth: 10.603
Annual growth: 1.266

How much are we earning over a period of time?

In [545]:
import seaborn as sns

def plot_investing_growth_distribution(costs_array, window):
    epoch = 19 * 365 * 5 // 7
    growths = []
    for costs in costs_array:
        for i in range(0, epoch - window, 8):
            dates_rr, values_rr = build_graph_given_distribution(costs, i + window + 1, lambda dates: pd.Series([dates[0], dates[window]]))
            # print("From", dates_rr[0], "to", dates_rr[1], "grew from", values_rr[0], "to", values_rr[1])
            gr = (values_rr[1] / values_rr[0]) ** (1 / window * (365 * 5 / 7))
            growths.append(gr)
    growths.sort()
    # q = len(growths) // 6
    # growths = growths[q:-q]
    return growths
In [546]:
inflation = 1.03
In [622]:
import scipy.stats.mstats as mstats

8 years NASDAQ index

In [547]:
gr_nq_8 = plot_investing_growth_distribution([nasdaq_index_costs], 8 * 365 * 5 // 7)
sns.displot(gr_nq_8)
Out[547]:
<seaborn.axisgrid.FacetGrid at 0x193b1b552b0>

How likely to outperform saving in cash?

In [623]:
prob_nq_8 = len(list(filter(lambda x: x > inflation, gr_nq_8))) / len(gr_nq_8)
print("Probabily that saving in cash is outperformed:", round(prob_nq_8, 3))
print("Average growth:", mstats.gmean(gr_nq_8))
Probabily that saving in cash is outperformed: 0.958
Average growth: 1.1021939854857328

3 years NASDAQ index

In [549]:
gr_nq_3 = plot_investing_growth_distribution([nasdaq_index_costs], 3 * 365 * 5 // 7)
sns.displot(gr_nq_3)
C:\Users\goose\AppData\Local\Temp/ipykernel_48428/3058413756.py:10: RuntimeWarning: invalid value encountered in double_scalars
  gr = (values_rr[1] / values_rr[0]) ** (1 / window * (365 * 5 / 7))
Out[549]:
<seaborn.axisgrid.FacetGrid at 0x193afb095b0>

How likely to outperform saving in cash?

In [628]:
import math
prob_nq_3 = len(list(filter(lambda x: x > inflation, gr_nq_3))) / len(gr_nq_3)
print("Probabily that saving in cash is outperformed:", round(prob_nq_3, 3))
gr_nq_3_no_nan = list(filter(lambda x: not math.isnan(x), gr_nq_3))
print("Average growth:", mstats.gmean(gr_nq_3_no_nan))
Probabily that saving in cash is outperformed: 0.789
Average growth: 1.0990493361347755

1/2 year NASDAQ index

In [551]:
gr_nq_05 = plot_investing_growth_distribution([nasdaq_index_costs], 3 * 365 * 5 // 7 // 6)
sns.displot(gr_nq_05)
Out[551]:
<seaborn.axisgrid.FacetGrid at 0x193b1afb8e0>

How likely to outperform saving in cash?

In [629]:
prob_nq_05 = len(list(filter(lambda x: x > inflation, gr_nq_05))) / len(gr_nq_05)
print("Probabily that saving in cash is outperformed:", round(prob_nq_05, 3))
gr_nq_05_no_nan = list(filter(lambda x: not math.isnan(x), gr_nq_05))
print("Average growth:", mstats.gmean(gr_nq_05_no_nan))
Probabily that saving in cash is outperformed: 0.668
Average growth: 1.1296892183620093

8 years uniform index

In [553]:
gr_up_8 = plot_investing_growth_distribution([uniform_distr], 8 * 365 * 5 // 7)
sns.displot(gr_up_8)
Out[553]:
<seaborn.axisgrid.FacetGrid at 0x193b340ef70>

How likely to outperform saving in cash?

In [631]:
prob_up_8 = len(list(filter(lambda x: x > inflation, gr_up_8))) / len(gr_up_8)
print("Probabily that saving in cash is outperformed:", round(prob_up_8, 3))
gr_up_8_no_nan = list(filter(lambda x: not math.isnan(x), gr_up_8))
print("Average growth:", mstats.gmean(gr_up_8_no_nan))
Probabily that saving in cash is outperformed: 1.0
Average growth: 1.1077739111442202

3 years uniform index

In [555]:
gr_up_3 = plot_investing_growth_distribution([uniform_distr], 3 * 365 * 5 // 7)
sns.displot(gr_up_3)
C:\Users\goose\AppData\Local\Temp/ipykernel_48428/3058413756.py:10: RuntimeWarning: invalid value encountered in double_scalars
  gr = (values_rr[1] / values_rr[0]) ** (1 / window * (365 * 5 / 7))
Out[555]:
<seaborn.axisgrid.FacetGrid at 0x193b19d26d0>

How likely to outperform saving in cash?

In [632]:
prob_up_3 = len(list(filter(lambda x: x > inflation, gr_up_3))) / len(gr_up_3)
print("Probabily that saving in cash is outperformed:", round(prob_up_3, 3))
gr_up_3_no_nan = list(filter(lambda x: not math.isnan(x), gr_up_3))
print("Average growth:", mstats.gmean(gr_up_3_no_nan))
Probabily that saving in cash is outperformed: 0.837
Average growth: 1.1037990936728446

1/2 year uniform index

In [557]:
uniform_distr
Out[557]:
Symbol Cost
0 A 2.083333
20 AAPL 2.083333
30 ABCB 2.083333
117 ACU 2.083333
126 ADBE 2.083333
... ... ...
8315 YPF 2.083333
8328 ZBRA 2.083333
8338 ZEUS 2.083333
8361 ZNH 2.083333
8371 ZTR 2.083333

480 rows × 2 columns

In [633]:
gr_up_05 = plot_investing_growth_distribution([uniform_distr], 3 * 365 * 5 // 7 // 6)
sns.displot(gr_up_05)
Average growth: 1.1411038679049517

How likely to outperform saving in cash?

In [634]:
prob_up_05 = len(list(filter(lambda x: x > inflation, gr_up_05))) / len(gr_up_05)
print("Probabily that saving in cash is outperformed:", round(prob_up_05, 3))
gr_up_05_no_nan = list(filter(lambda x: not math.isnan(x), gr_up_05))
print("Average growth:", mstats.gmean(gr_up_05_no_nan))
Probabily that saving in cash is outperformed: 0.692
Average growth: 1.1411038679049517

Uniform Partial index

Take N random companies and invest the same amount of money into them

In [638]:
N = 20
uniform_distr_partial = pd.concat([old_companies["Symbol"], old_companies["Symbol"].map(lambda _: budget / N)], keys=["Symbol", "Cost"], axis=1)
uniform_distr_partial.sample(n=N)
Out[638]:
Symbol Cost
4286 KEP 50.0
30 ABCB 50.0
117 ACU 50.0
1802 CNX 50.0
6940 SLGN 50.0
3728 HQH 50.0
2985 FR 50.0
2075 CXH 50.0
1717 CLWT 50.0
413 AMAT 50.0
8157 WLFC 50.0
4963 MMT 50.0
1375 CACC 50.0
5384 NPV 50.0
4424 LAMR 50.0
8074 WAT 50.0
4869 MGF 50.0
6081 POWI 50.0
6354 RCII 50.0
3135 GAIA 50.0
In [639]:
uniform_distr_partial_array = [uniform_distr_partial.sample(n=N) for i in range(100)]

8 year Uniform partial index

In [640]:
growths_uni_partial_8 = plot_investing_growth_distribution(uniform_distr_partial_array, 8 * 365 * 5 // 7)
sns.displot(growths_uni_partial_8)
Out[640]:
<seaborn.axisgrid.FacetGrid at 0x193b3ba0c10>

How likely to outperform saving in cash?

In [641]:
prob_8 = len(list(filter(lambda x: x > inflation, growths_uni_partial_8))) / len(growths_uni_partial_8)
print("Probabily that saving in cash is outperformed:", round(prob_8, 3))
growths_uni_partial_8_no_nan = list(filter(lambda x: not math.isnan(x), growths_uni_partial_8))
print("Average growth:", mstats.gmean(growths_uni_partial_8_no_nan))
Probabily that saving in cash is outperformed: 0.973
Average growth: 1.1024118089392492

3 year Uniform partial index

In [642]:
growths_uni_partial_3 = plot_investing_growth_distribution(uniform_distr_partial_array, 3 * 365 * 5 // 7)
sns.displot(growths_uni_partial_3)
C:\Users\goose\AppData\Local\Temp/ipykernel_48428/3058413756.py:10: RuntimeWarning: invalid value encountered in double_scalars
  gr = (values_rr[1] / values_rr[0]) ** (1 / window * (365 * 5 / 7))
Out[642]:
<seaborn.axisgrid.FacetGrid at 0x193c180f430>

How likely to outperform saving in cash?

In [643]:
prob_3 = len(list(filter(lambda x: x > inflation, growths_uni_partial_3))) / len(growths_uni_partial_3)
print("Probabily that saving in cash is outperformed:", round(prob_3, 3))
growths_uni_partial_3_no_nan = list(filter(lambda x: not math.isnan(x), growths_uni_partial_3))
print("Average growth:", mstats.gmean(growths_uni_partial_3_no_nan))
Probabily that saving in cash is outperformed: 0.787
Average growth: 1.097938419107811

1/2 years Uniform partial index

In [644]:
growths_uni_partial_05 = plot_investing_growth_distribution(uniform_distr_partial_array, 3 * 365 * 5 // 7 // 6)
sns.displot(growths_uni_partial_05)
Out[644]:
<seaborn.axisgrid.FacetGrid at 0x193b55111c0>

How likely to outperform saving in cash?

In [645]:
prob_05 = len(list(filter(lambda x: x > inflation, growths_uni_partial_05))) / len(growths_uni_partial_05)
print("Probabily that saving in cash is outperformed:", round(prob_05, 3))
growths_uni_partial_05_no_nan = list(filter(lambda x: not math.isnan(x), growths_uni_partial_05))
print("Average growth:", mstats.gmean(growths_uni_partial_05_no_nan))
Probabily that saving in cash is outperformed: 0.66
Average growth: 1.1343710590764124

Conclusion

If for some reason you cannot or don't want to buy ETFs, and want individual shares, but more or less reliable, you can start by investing into 5-10 random companies with the same amount of money.

Summary

Strategy Rel. 1/2 year Rel. 3 years Rel. 8 years Growth
Nq 400 .668 .789 .958 .10-.13
U 400 .692 .837 1.0 .10-.14
UP 20 .679 .799 .965 .10-.13
UP 5 .617 .716 .826 .09-.13

Strategy

  • Nq - propotional (Nasdaq index)
  • U - uniform
  • UP - Uniform partial (the number of stocks specified)

Reliability

The probability that the given strategy will result in portfolio worth less in given number of years than it was with the inflation adjusted.

Growth

Average annual growth